Fly Different, Fly Piaggio Aero
The P180 Avanti II combines elegant Italian styling and craftsmanship, the quietness and comfort of an enormous, comfortable cabin, and remarkable performance that makes it the fastest aircraft in its class outpacing the most widely sold turbojet aircraft on the market. Speed, performance and eye-catching styling with operating costs that are up to 40% lower than its equivalent jet competitors are some of the key attributes of this remarkable airplane.

A complex aeronautical research project which required years of development and thousands of hours of tests in the wind tunnel produced this technologically advanced aircraft with a totally innovative approach to design and construction.

With its outstanding integration of advanced technological solutions and standard equipment offering class-leading operational efficiency, the P180 Avanti II combines superior performance with the very highest levels of reliability and safety.

Introduction

P180 Avanti II
It’s time to Fly Different

Elegant, economical and offering class-leading performance, the Piaggio Aero P180 Avanti is the best way to fly in today’s business world, thanks to its surprisingly low operating costs and the lowest level of emissions in its class. It is now possible to be the fastest and the greenest aircraft at the same time without sacrificing the unmatched comfort and superior performance that make the Piaggio Aero P180 Avanti the fastest and most advanced business aircraft available in its market sector.
In the P180 Avanti II speed matters. We combine high performance with efficiency and attain a maximum speed of 402 kts (745 km/h, 463 mph) that ensures a travel time for you and your passengers that is faster than all other twin turboprops and compares very favorably with light jets, yet at a fraction of their operating costs.

All of this comes from the combination of unique aerodynamic solutions and the proven power of the Pratt & Whitney Canada PT6A-66B engines. Quiet and reliable, these renowned engines develop a maximum thermal power of over 1630 HP each (derated to 850 SHP).

The Piaggio Aero P180 Avanti II can reach a service ceiling of 41,000 ft (12,500 m) and is the fastest twin turboprop ever built. It reaches its certified maximum speed of 402 knots at 31,000 ft (9,450 m), with a maximum operating Mach (MMO) of 0.70 giving performance characteristics superior to those of many jet aircraft.

Speed matters

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Cruise Speed (KTAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>King Air B200 GT</td>
<td>305</td>
</tr>
<tr>
<td>King Air B350</td>
<td>312</td>
</tr>
<tr>
<td>Citation CJ1+</td>
<td>389</td>
</tr>
<tr>
<td>Phenom 100</td>
<td>390</td>
</tr>
<tr>
<td>Citation CJ2+</td>
<td>413</td>
</tr>
<tr>
<td>Citation CJ3</td>
<td>417</td>
</tr>
<tr>
<td>Hawker 400 XP</td>
<td>450</td>
</tr>
<tr>
<td>Phenom 300</td>
<td>450</td>
</tr>
<tr>
<td>Premier IA</td>
<td>451</td>
</tr>
<tr>
<td>P180 Avanti II</td>
<td>402</td>
</tr>
</tbody>
</table>

In the quote below the speed comparison table is adequate; however, for proven power of the Pratt & Whitney Canada PT6A-66B engine. Quiet and reliable, these renowned engines develop a maximum thermal power of over 1630 HP each (derated to 850 SHP). The Piaggio Aero P180 Avanti II uses a service ceiling of 41,000 ft (12,500 m) and is the fastest twin turboprop ever built. It reaches its certified maximum speed of 402 knots at 31,000 ft (9,450 m), with a maximum operating Mach (MMO) of 0.70 giving performance characteristics superior to those of many jet aircraft.

Power and performance

Only Avanti II compares to Avanti II

In the P180 Avanti II speed matters. We combine high performance with efficiency and attain a maximum speed of 402 kts (745 km/h, 463 mph) that ensures a travel time for you and your passengers that is faster than all other twin turboprops and compares very favorably with light jets, yet at a fraction of their operating costs.

All of this comes from the combination of unique aerodynamic solutions and the proven power of the Pratt & Whitney Canada PT6A-66B engines. Quiet and reliable, these renowned engines develop a maximum thermal power of over 1630 HP each (derated to 850 SHP). The Piaggio Aero P180 Avanti II uses a service ceiling of 41,000 ft (12,500 m) and is the fastest twin turboprop ever built. It reaches its certified maximum speed of 402 knots at 31,000 ft (9,450 m), with a maximum operating Mach (MMO) of 0.70 giving performance characteristics superior to those of many jet aircraft.

The advantage of power

All of this comes from the combination of unique aerodynamic solutions and the proven power of the Pratt & Whitney Canada PT6A-66B engines. Quiet and reliable, these renowned engines develop a maximum thermal power of over 1630 HP each (derated to 850 SHP). The Piaggio Aero P180 Avanti II uses a service ceiling of 41,000 ft (12,500 m) and is the fastest twin turboprop ever built. It reaches its certified maximum speed of 402 knots at 31,000 ft (9,450 m), with a maximum operating Mach (MMO) of 0.70 giving performance characteristics superior to those of many jet aircraft.
With its extended cruising range (just under 1500 nm, with IFR reserves), the Piaggio Aero P180 Avanti II can easily reach any medium range destination without the need for time consuming refueling stops. Unlike many aircraft in its class, it can take off and land on runways less than 1000 meters long and thanks to this capability and its steep approach certification, the P180 Avanti II provides access to airports not served by scheduled airlines or available to business jets.

Where you want, when you want… and no stops.
Every component and system in the P180 Avanti II is carefully designed to provide the highest levels of efficiency and safety under all flight conditions. But the real key to its success is an advanced design with many innovative solutions, the most important of which is the Three-Lifting-Surface configuration.

The forward wing of the aircraft contributes to lift, since it is a fixed surface, and the pitch angle of the forward wing is configured so that it always stalls before the main wing. The resulting automatic nose-down effect assures excellent in-flight behavior at high angles of attack. These aerodynamic advantages resulting from the aircraft’s innovative design and construction, cause the airflow to laminar over a very high percentage of the aircraft's wing chord.

Additionally, the push configuration of the propellers prevents propeller turbulence from interfering with the aircraft’s wing aerodynamics, which lowers total drag and provides performance that is significantly higher than in aircraft with forward facing propellers.

Aerodynamics

Unique design and totally innovative solutions
The overall effect generated by the special architecture and configuration of the three lifting surfaces reduces the surface area of the main wing required for a given payload by 34% and offers great benefits in terms of reduced weight, drag and higher performance.

Main wing

The small forward wing is the truly revolutionary innovation of the P180 Avanti II. This amazing design solution significantly reduces weight and drag, which translates into superior aircraft performance combined with remarkably economical operation.

Front wing

A single, continuous aerodynamic curve surrounds the P180 Avanti II from nose to tail to create a perfect profile that maintains laminar flow, thus minimizing drag and maximizing performance.
One small step forward for aviation, one giant green leap for the environment. Its innovative technical design and construction solutions enable the Piaggio Aero P180 Avanti II to burn 40% less fuel than a comparative jet does and this lower fuel burn also means 40% less emissions released into the atmosphere, keeping it cleaner.

And that’s not all.

The production process for this aircraft has been awarded UNI 14001 certification for its environmental management system. That’s why the Piaggio Aero P180 Avanti II is a true “green aircraft.”

At this is combined with remarkable versatility, that makes the Piaggio Aero P180 Avanti II a widely used aircraft in public services such as an ambulance, air rescue missions, law enforcement, and flight inspections, providing its operators, and the environment, with a minimal carbon footprint while ensuring the safety of people and property.
More emotions, less emissions
Higher performance with remarkably low operating costs

With its totally innovative aerodynamic solutions, the design of the P180 Avanti II is unique, beautiful and truly unmistakable. The single, continuous aerodynamic curve that surrounds the Piaggio Aero P180 Avanti II from nose to tail, creates a perfect profile that maintains laminar flow, minimizes drag and maximizes performance. This amazing design solution significantly reduces weight and drag and translates into higher performance combined with remarkably low operating costs.

Fuel consumption (for a 300 nm flight)
Maximum comfort at all altitudes

The P180 Avanti II can comfortably host up to 9 passengers thanks to the enormous size of its full stand-up cabin, which is by far the most spacious in its class. The category leading stand up cabin of the P180 Avanti II has a height of 5’9” (1.75 m) and a width of 6’1” (1.85 m), providing the ideal space for both work and relaxation. Thanks to its 375 Cubic feet cabin volume the P180 Avanti II is able to offer the best volume per seat, allowing you to fly first class on every flight.
Possible layouts

Shuttle configuration
7/8 passengers + 2 crew members

Typical executive configuration
7 passengers + 2 crew members

Super VIP executive configuration
6 passengers + 2 crew members

Interior options

Choose your style

To complete the interior arrangement, our customers can choose from three different cabin layouts, a wide range of the finest materials, trim and accessories that personalize their airplane and which reflect their personal style and operational requirements.
To add to this wonderful cabin environment and to maximize passenger comfort the Piaggio Avanti II offers perfect pressurization (a maximum pressure differential of 9.0 PSI), and maintains sea level cabin pressure up to an altitude of 24,000 ft (7,300 m).

Making the cabin complete is outstanding silence. A noise level of only 68 decibels allows you to comfortably relax in the spacious, fully reclining seats and enjoy the many other available amenities that we’ve put in the Piaggio Avanti II to ensure that every flight experience is memorable and rejuvenating.
In addition to the P180 Avanti II, Piaggio now also offers a high technology version, the P180 Avanti II It option package. A real business lounge-in-the-sky equipped with advanced solutions for on-board work and entertainment. The package includes the following systems:

- **Broadband** connectivity which can be used with a laptop, Smartphone or Blackberry ensuring that not a single minute of wireless connectivity is lost and enabling passengers to read their e-mail and conduct business wherever they are.

- **IFE** - In Flight Entertainment System with LCD displays and advanced amplification systems that make life on-board entertaining and even more pleasant. A moving map also enables passengers to know their exact geographic position and remaining trip time at a single glance.

- **Mood Lighting System** an innovative illumination system that makes the cabin of the P180 Avanti II even cozier, at any time of the day or night.

- **Electrochromic Window Shades** which enable passengers to independently adjust the natural light entering the cabin from any position.

The oversized baggage compartment with its capacity of 1.25 cubic meters is accessible from the cockpit and so spacious it can accommodate extra large pieces of baggage. It can even handle skis and golf bags.
Like Ferrari, Piaggio Aero represents technology and unrivalled Italian style. One of the most recognized logos in the world is Ferrari’s “Prancing Horse”, proudly displayed on the Piaggio Aero P180 Avanti II flown by the Scuderia. It is the only aircraft that displays the renowned Ferrari logo. The Piaggio Aero P180 Avanti II combines innovative style and superior performance with innovative style and the comfort of a large, quiet, unrivalled cabin. Piaggio Aero’s efforts are focused on improving the most environmentally friendly and fuel efficient turboprop while offering the same or better performance than that of its more expensive and heavier polluting jet competitors. These are the same efforts that the Formula 1 industry is taking with their research into new engines, electronics and regenerative braking systems. All these innovations that filter back to volume production cars, and the aviation industry, particularly the business aviation segment, represent a great benefit to the environment and your personal aviation needs.

Scuderia Ferrari flies Piaggio Aero

Ferrari’s choice
The integrated digital cockpit is designed to offer pilots and passengers of the Piaggio Aero P180 Avanti II the reliability, efficiency and safety of the most advanced technology available on the market.

It is equipped with the comprehensive and proven Collins Pro Line 21, digital avionics suite, which is completely integrated with the aircraft’s navigation and communication systems, and is certified for full IFR use - even with a single pilot.

Advanced technology

Advanced technology and Safety

The integrated digital cockpit is designed to offer pilots and passengers of the Piaggio Aero P180 Avanti II the reliability, efficiency and safety of the most advanced technology available on the market.

It is equipped with the comprehensive and proven Collins Pro Line 21, digital avionics suite, which is completely integrated with the aircraft’s navigation and communication systems, and is certified for full IFR use - even with a single pilot.

Cockpit and Avionics

Advanced technology and Safety

The integrated digital cockpit is designed to offer pilots and passengers of the Piaggio Aero P180 Avanti II the reliability, efficiency and safety of the most advanced technology available on the market.

It is equipped with the comprehensive and proven Collins Pro Line 21, digital avionics suite, which is completely integrated with the aircraft’s navigation and communication systems, and is certified for full IFR use - even with a single pilot.

Standard avionics system includes:
- 8x10” LCD displays for the control panels
- 1 cursor control panel
- 1 integrated processing system for avionics data
- 4 data concentrators
- FMS 3000 Flight Management System
- AHRS 3000 Attitude Heading Reference System

Standard equipment also includes:
- RVSM
- TCAS
- TAWS
- Category II approach capability

The digital technology built into the Pro Line 21 avionics system ensures the highest levels of reliability, efficiency, and above all safety.
In its construction of the aircraft, Piaggio Aero stands out for its innovation and efficiency. The assembly technique used for the P180 Avanti II is a reversal of the “normal” aircraft assembly process. Contrary to the usual construction procedure, the outer surface of the aircraft is built first to project specifications, thus ensuring that the dimensions and shapes comply exactly with those on the blueprints. Only at this point are the external forms connected to the internal structures.

This innovative construction method involves forming the aluminum panels of the fuselage in advance, and then maintaining them in the prescribed position and shape. The process is made possible by applying a patented pneumatic vacuum system, while the struts and reinforcement ribs are riveted.

The panels are then connected to the structural elements from the inside, which absolutely prevents any warping or imperfections in the fuselage, so that a level of surface finish is reached that is normally only possible with the use of composite materials.

Thanks to these innovative technical, design and construction solutions, the Paggio P180 Avanti II achieves a specific range of 0.84 nautical miles per pound of fuel, which translates into unmatched operational efficiency and extremely low environmental impact. Piaggio Aero cares about the environment and has made the environmental friendliness of the P180 Avanti II a key company focus.
Customer support

A call center and AGS Support help desk line is available 24/7 to answer technical questions and provide information for spare parts and logistic support. Moreover, a team of selected, highly qualified factory-trained field technicians is available to carry out maintenance and repair tasks as needed. Spare parts distribution services for Engines, Avionics and other major systems are provided directly by the relevant world-class OEMs (i.e. Pratt & Whitney Canada, Rockwell Collins, Honeywell and others), by taking advantage of their existing worldwide support networks offering same-day service.

Pratt & Whitney Canada engines can be enrolled in any of the proposed formulas of the P&WC Eagle Service Plan®, where—for a flat fee per flight hour per engine, depending on the chosen formula—a different level of coverage for scheduled and unscheduled maintenance, repair overhaul operations and spare parts are included.

At some selected locations, either a Piaggio Aero directly owned and operated Service Center or where a specific agreement with a third party-owned Service Center exists, a turn-key CIP® Maintenance Contract, tailored to customer expected yearly utilization and location, can be offered. This allows for more accurate maintenance cost planning and control, higher scheduling and logistics efficiency, while at the same time eliminating the need for multiple points of contact.

Piaggio Aero’s Support Network of factory authorized Service Centers, with four main hubs/spare parts distribution centers in Genoa (IT), West Palm Beach (FL, USA), Abu Dhabi (UAE) and Singapore, a constantly growing to keep pace with Piaggio P180 Avanti II sales around the world and ensure prompt and efficient product and customer support. Piaggio Aero Customer support aims to offer fully equipped and factory authorized, Maintenance and Service Centers close to its customers and providing factory level training to the maintenance technicians.
Special Mission Aircraft

The best choice for your mission

Versatility and reliability combined with advanced technology have made the Piaggio Aero P180 Avanti II the ideal aircraft for specialized, critical missions such as air rescue and air ambulance flights.

In its "Special Mission" configuration, the P180 Avanti II is used as a multi-utility aircraft for patrolling, photo detection, and civil and military flight inspection. The "Special Mission" configuration is also used by the Italian and other international Armed Forces and government agencies as an air ambulance, or patrol unit for regional surveillance, for coastal defense and monitoring territorial waters.
The P180 Avanti II, thanks to its flexible, operational capabilities, performance and efficiency is used in many emergency medical transport missions and is set up with the most modern emergency medical equipment, provided by Lifeport Inc, a company that leads the industry in this field.

To ensure maximum comfort for patients in transit, the aircraft pressurization is kept at sea level pressure up to a flight altitude of 24,000 ft providing a smooth flight and generally well away from any flight turbulence. The Avanti II also provides outstanding accessibility for patient loading, with its large cabin offering a work-friendly environment for medical staff to attend to up to two patients in-flight, on the proven Lifeport stretcher systems.

In order to maximize its operational capabilities, the aircraft is also equipped with an organ transport system and a sophisticated emergency incubator.

Air Ambulance

The P180 Avanti II, thanks to its flexible, operational capabilities, performance and efficiency is used in many emergency medical transport missions and is set up with the most modern emergency medical equipment, provided by Lifeport Inc, a company that leads the industry in this field.

To ensure maximum comfort for patients in transit, the aircraft pressurization is kept at sea level pressure up to a flight altitude of 24,000 ft providing a smooth flight and generally well away from any flight turbulence. The Avanti II also provides outstanding accessibility for patient loading, with its large cabin offering a work-friendly environment for medical staff to attend to up to two patients in-flight, on the proven Lifeport stretcher systems.

In order to maximize its operational capabilities, the aircraft is also equipped with an organ transport system and a sophisticated emergency incubator.
The characteristics of the P180 Avanti II and its capability to operate at low and high altitudes have allowed it to be the ideal airplane for Flight Inspection as required by current radio regulations ICAO/NATO. The radio measurement aircraft are equipped with a system designed and manufactured by NSM (Norwegian Special Missions).

Flight inspection activity performs continual monitoring of the radio signals (Radar, VOR, DME, ILS, etc.), to verify the validity of the signals transmitted during takeoff and landing phases by aircraft.

Flight Inspection

The Flight Inspection Piaggio Avio P180 Avanti II aircraft fly an average of 600 flight hours per year and can carry out operations without the support of any ground-based devices. The efficiency of this service, which verifies compliance with international standards of radio signals emitted by equipment for approaches and instrumental flight, enables the air transport system to operate safely.
The P180 Avanti II offers tremendous enforcement capability in territorial multifunctional surveillance through the use of a Forward Looking Infra Red (FLIR) television camera system. FLIR technology is, without question, the most effective for territory surveillance missions and activities to monitor illegal immigration and smuggling.

The Piaggio Aero P180 Avanti II is designed for maritime surveillance patrol activities that government agencies carry out to protect from land misuse, illegal immigration, smuggling and illegal trafficking. These activities are monitored through the use of the FLIR television camera which is mounted on the lowest part of the aircraft fuselage.
Heritage makes the difference
A glorious and successful story

Innvoative and successful aircraft are the result of hours spent expanding the design envelope of every component to ensure they are the very best that today’s technology can offer.

This is the only way of working that Piaggio has known since its beginning and now it is the only company in the world that is active in the design, construction and maintenance of aircraft and aircraft engines.

The glorious and successful story of Piaggio Aero Industries began in 1884, when Rinaldo Piaggio became active in the railway industry after first trying his hand in the naval furnishings sector.

Aircraft manufacturing then started in 1915, and the innovative solutions developed by engineers, Giovanni Pegna and Giuseppe Gabrielli were fundamental to the development of the company’s aviation operations.

The result was its first helicopter, which was built to standards that were highly advanced for the time as was its performance. It was the first aircraft with rotating wings, and opened the doors to the development of modern day helicopters.

The result was its first helicopter, which was built to standards that were highly advanced for the time as was its performance. It was the first aircraft with rotating wings, and opened the doors to the development of modern day helicopters.

The result was its first helicopter, which was built to standards that were highly advanced for the time as was its performance. It was the first aircraft with rotating wings, and opened the doors to the development of modern day helicopters.

Since 1915 more than 50 aircraft have been designed and manufactured by Piaggio Aero.

Studies for the P180 Avanti project began in 1979 and lasted over 10 years, and in 1990, the remarkable Piaggio P180 Avanti was first introduced.

The result was its first helicopter, which was built to standards that were highly advanced for the time as was its performance. It was the first aircraft with rotating wings, and opened the doors to the development of modern day helicopters.

From this point onwards Piaggio’s celebrated pursuit of innovation and development began and involved the creation of aircraft with advanced technology and aerodynamics like the speed-shaped fuselage of the P7 and the royal gull wing of the P136 and P166.

Heritage
The company, which was renamed Piaggio Aero Industries, then became a leader in the production of executive airplanes after only a few years. Its growing success attracted international interest and has resulted in the acquisition of shares in Piaggio Aero by two of the world’s most important strategic and industrial business development groups: Mubadala Development Company, a strategic investment company owned by the Abu Dhabi government and Tata Limited, a British company and part of the Tata Group.
External dimensions

Wing
- Span (without fairings): 45.41 ft (13.84 m)
- Asp. Ratio: 11.96
- Sweep (leading edge): 7° 11' 24"
- Dihedral: 2° 00' 00"
- Area: 722.22 ft² (16.00 m²)
- Wing Loading: 67.07 lb/ft² (327.40 kg/m²)

Forward Wing
- Span (without fairings): 10.76 ft (3.28 m)
- Asp. Ratio: 4.92
- Sweep (25% chord): 0° 00' 00"
- Dihedral: 0° 00' 00"
- Area: 23.59 ft² (2.19 m²)

Horizontal Tail
- Span: 7.70 ft (2.35 m)
- Sweep (25% chord): 29° 48' 00"
- Dihedral: 2° 00' 00"
- Area: 41.27 ft² (3.83 m²)

Vertical Tail
- Span: 7.70 ft (2.35 m)
- Sweep (25% chord): -5° 00' 00"
- Area: 50.92 ft² (4.73 m²)

Landing Gear
- Track: 9 ft 4 in (2.84 m)
- Wheelbase: 19 ft 0 in (5.79 m)

Overall Dimensions
- Length: 47 ft 3.2 in (14.41 m)
- Height: 13 ft 0.7 in (3.98 m)
- Span: 46 ft 0.5 in (14.03 m)
Internal dimensions and volumes

Cabin Dimensions
- **Height:** 69 in \(1.75\) m
- **Width:** 73 in \(1.85\) m
- **Cockpit Length:** 57 in \(1.45\) m
- **Passenger Cabin Length:** 179 in \(4.55\) m
- **Lavatory Length:** 31 in \(0.78\) m
- **Total Length:** 267 in \(6.79\) m

Cabin Volume
- **Cockpit:** 79.81 ft\(^3\) \(2.26\) m\(^3\)
- **Cabin:** 375.00 ft\(^3\) \(10.62\) m\(^3\)
- **Total Volume:** 454.81 ft\(^3\) \(12.88\) m\(^3\)

Cabin Door Dimensions
- **Height:** 53 in \(1.35\) m
- **Width:** 24 in \(0.61\) m

Baggage Compartment Dimensions
- **Total Length:** 67 in \(1.70\) m
- **Total Volume:** 44.15 ft\(^3\) \(1.25\) m\(^3\)

Weights
- **Maximum Ramp:** 12150 lb \(5511\) kg
- **Maximum Take-off:** 12100 lb \(5489\) kg
- **Maximum Landing:** 11500 lb \(5216\) kg
- **Maximum Zero Fuel:** 9800 lb \(4445\) kg
- **Standard Equipped Empty:**
 - **(1):** 7850 lb \(3561\) kg
- **Standard Operating Empty:**
 - **(2):** 8050 lb \(3651\) kg
- **Useful Load:**
 - **(3):** 4100 lb \(1860\) kg
- **Usable Fuel:**
 - **(4):** 2802 lb \(1271\) kg
- **Maximum Net Payload:**
 - **(5):** 1750 lb \(794\) kg
- **Fuel with Max. Net Payload:**
 - **(6):** 2350 lb \(1066\) kg
- **Net Payload with Max. Fuel:**
 - **(7):** 1298 lb \(589\) kg

Notes
1. Assuming standard VIP interior configuration. Does not include weight of crew. For reference only. Weight may vary depending on interior configuration and options selection.
2. Includes one pilot at 200 lbs.
3. Maximum ramp weight less operating empty weight.
4. Equal to 418.1 U.S. gallons or 1,583 liters.
5. Zero fuel weight less operating empty weight.
6. Useful load less maximum net payload.
7. Useful load less full fuel weight.
Pressurisation

The structure supports a nominal maximum cabin pressure differential 9.0 psi.

<table>
<thead>
<tr>
<th>Differential</th>
<th>9.0 psi</th>
<th>0.62 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.L. Cabin to</td>
<td>24000 ft</td>
<td>7315 m</td>
</tr>
<tr>
<td>S.L.</td>
<td>41000 ft</td>
<td>12500 m</td>
</tr>
<tr>
<td>Certified ceiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabin altitude at certified ceiling</td>
<td>6000 ft</td>
<td>2012 m</td>
</tr>
<tr>
<td>Altitude at certified ceiling</td>
<td>41000 ft</td>
<td>12500 m</td>
</tr>
</tbody>
</table>

Cabin altitude @ certified ceiling 6600 ft 2012 m

Certified ceiling

Take-off Distance (1), S.L., ISA 3262 ft 994 m

Landing Distance (2), S.L., ISA (*) 3282 ft 1000 m

Rate of Climb, S.L., ISA

Both Engines 2770 ft/min 844 m/min

One Engine Inoperative 670 ft/min 204 m/min

Service Ceiling

Both Engines 39400 ft 12009 m

One Engine Inoperative 23800 ft 7254 m

Notes

(*) Distance obtained by flight testing as per the EASA/FAA rules, distance certification pending.

Notes

(1) FAR 23 runway requirement (2-engine Take-off to clear 50 feet) for turboprop aircraft.

(2) Total distance over 50 feet, full flaps, without propeller reversing. Does not include any runway factors for destination or alternate airports.

Powerplant

Engines

Manufacturer PRATT & WHITNEY OF CANADA

Model PT6A-66B

Power (each) (flat rated from 1630 thermodynamic HP) 850 SHP (634 kW)

Power Loading 7.12 lb/SHP (3.23 kg/SHp)

TBO 3600 hours

Propellers

Manufacturer HARTZELL

Model HC-ESN

Diameter 85 in (2159 mm)

Type Five-blade, constant speed, fully feathering, hydraulically controlled

Performance - Take-off, landing and altitude performance

Take-off Distance (1), S.L., ISA 3262 ft 994 m

Landing Distance (2), S.L., ISA (*) 3282 ft 1000 m

Rate of Climb, S.L., ISA

Both Engines 2770 ft/min 844 m/min

One Engine Inoperative 670 ft/min 204 m/min

Service Ceiling

Both Engines 39400 ft 12009 m

One Engine Inoperative 23800 ft 7254 m

Notes

(*) Distance obtained by flight testing as per the ICAO noise levels specified in FAR 36, Appendix G, amdts. 16 and in ICAO Annex 16 Chapter 10.

Noise

The aircraft is compliant with certification noise levels specified in FAR 36, Appendix G, amdts. 16 and in ICAO Annex 16 Chapter 10.
Cruise Performance

Maximum Speed\(^\text{3}\) 402 KTAS 745 km/h - 463 mph

Cruise Speed at Maximum Cruise Power\(^\text{4}\)
- At 31000 ft 400 KTAS 741 km/h - 460 mph
- At 35000 ft 386 KTAS 715 km/h - 444 mph
- At 39000 ft 357 KTAS 661 km/h - 411 mph

Ranges\(^\text{5}\)
- IFR Maximum-Cruise Range at Maximum Range Power 1470 nm 2722 km
- VR/VR Maximum-Cruise Range at Maximum-Cruise Power 1420 nm 2630 km

NOTES

\(^{3}\) At 31000 feet and ISA Conditions.
\(^{4}\) Typical mid-cruise weights (operating weight + 4 Pax + 1/2 full fuel) ISA conditions and IFR reserves.
\(^{5}\) Mission with 1 pilot + 4 Pax, ISA conditions, zero wind.

Operating Speeds

Stall Speed, Landing Configuration
- VSO 97 KIAS 179 km/h - 111 mph

Maximum Operating Speed Limits
- VMO 260 KIAS 482 km/h - 302 mph
- MMO 0.7 Mach

Maximum Flap Operating Speeds
- VFS Flaps MID 170 KIAS 315 km/h - 196 mph
- VFS Flaps DN 150 KIAS 278 km/h - 173 mph

Maximum Flap Extended Speeds
- VFE Flaps MID 183 KIAS 339 km/h - 211 mph
- VFE Flaps DN 176 KIAS 326 km/h - 203 mph

Maximum Landing Gear Operating Speed
- VLO 181 KIAS 335 km/h - 208 mph

Maximum Landing Gear Extended Speed
- VLE 185 KIAS 343 km/h - 213 mph

Minimum Control Airspeed
- VMCA 100 KIAS 185 km/h - 115 mph

Maneuvering Speed
- VA 202 KIAS 374 km/h - 232 mph
Avionics, Instruments and Control Panel

- Radio Management System - Collins RTU-2500, CDU-3000
- Dual NAV/COM - Collins NAV-4000/6000 with Autopilot with 328 kHz spacing
- VHF NAV / ADF - Collins NAV-4000/6000/9500/9500 with Autopilot
- NAV / VOR - Collins NAV-4000/6000/9500/9500 connected with Autopilot
- Single CMO - Collins CMO-4000 (1 channel) with Autopilot
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Radio Monitor - Collins AFD-3000 (operation to 2900 MHz) with Autopilot
- Tachometer/Dual Battery Warning - Collins RTU-652 Railway side (2) with Autopilot

TCA-1 – 11-Communications Skyjack II HP model (9/99)

- TAWS Class B with Worldwide Database – L-3 Communications Landmark model TAWS8000
- TAWS Class B with Worldwide Database – L-3 Communications SkyWatch HP model SKY899
- Turbulence Detection Weather Radar - Collins RTU-8512 Colour Radar with 17” Autopilot
- Hobbs meter

NOTE: RVS8, Map Chart 8.7. Categories I and II landing systems are included as standard.

Electrical Systems and Lights

- Two 400 A, 24 V Starter Generators
- Two Solid State Generator Control Unit
- Nickel-60 Battery (150 Ah)
- External Power Receptacle with Overvoltage Protection

- Nine Buses DC Distribution System with Auto Load Sharing
- Dual Solid State Master Warning and Caution Panels with Self Test and Dimmer
- Power Plant and related Systems
- Hydraulic Power Pack
- Main Wing Anti-Ice System (bleed air)
- Forward Wing Anti-Ice System (Electrical)
- Environmental Control System with Freon cooling system
- Digital Cabin Pressure Control System with manual back-up
- Oxygen System for Pilots (Two Diluter / Demand Masks) and Passengers (Ten Masks)
- Engine Parameter Indication on Multi Function Display
- Complete Engine Anti-Icing System with Ice Protected Engine Inlet
- Low Oil Quantity Warning System
- Pressure and Gravity Refuelling
- Fuel Crossfeed System
- Fuel Control Unit
- Submerged electric main and standby Fuel Boost Pumps
- Dual heated Pitot and Static Ports with heating monitor
- Solid State Warning and Caution Annunciator Panel with Self Test and Dimmer

- Two 400A, 28V Starter Generators
- Two Solid State Generator Control Unit
- Nickel-60 Battery (150 Ah)
- External Power Receptacle with Overvoltage Protection

- Nine Buses DC Distribution System with Auto Load Sharing
- Dual Solid State Master Warning and Caution Panels with Self Test
- Solid State Warning and Caution Announcement Panel with Self Test and Dimmer
- Ground Beacon Light with Flasher Panel
- Windscreen Ice Protection System
- Windscreen Ice Protection System
- Windshield Electric Anti-Ice and De-icing
- Hydraulic Power Pack
- Two 400A, 28V Starter Generators
- Two Solid State Generator Control Unit
- Nickel-60 Battery (150 Ah)
- External Power Receptacle with Overvoltage Protection

- Nine Buses DC Distribution System with Auto Load Sharing
- Dual Solid State Master Warning and Caution Panels with Self Test
- Solid State Warning and Caution Announcement Panel with Self Test and Dimmer
- Ground Beacon Light with Flasher Panel
- Windscreen Ice Protection System
- Windscreen Ice Protection System
- Windshield Electric Anti-Ice and De-icing
- Hydraulic Power Pack

Powerplant and related Systems
- Two M277-1W & W-360 model PT6A-66F Free Turbine Engines rated at 850 Shaft Horse Power and Engine Accessories
- Two HARTZELL HC-E5N 85” diameter, five metal blades, fully feathering and reversible, hydraulically or electrically controlled, constant speed propellers
- Magnetic Chip Detector
- Overspeed Propeller Governor
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Dual Mode S Flight Data Transponder - Collins TDR-940
- Dual Mode S Flight Data Transponder - Collins TDR-940